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ABSTRACT
Partially paired data, either with incompleteness in one or both arms,
are common in practice. For testing equality of means of two arms,
practitioners often use only the portion of data with complete pairs
and perform paired tests. Although such tests (referred as ‘naive
paired tests’) are legitimate, their powersmight be low as only partial
data are utilized. The recently proposed ‘P-value pooling methods’,
based on combining P-values from two tests, use all data, have rea-
sonable type-I error control andgoodpowerproperty.While it is gen-
erally believed that ‘P-value pooling methods’ are superior to ‘naive
paired tests’ in terms of power as the former use more data than the
latter, no detailed power comparison has been done. This paper aims
to compare powers of ‘naive paired tests’ and ‘P-value poolingmeth-
ods’ analytically andour findings are counterintuitive, i.e. the ‘P-value
pooling methods’ do not always outperform the naive paired tests
in terms of power. Based on these results, we present guidance on
how to select the best test for testing equality ofmeanswith partially
paired data.
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1. Introduction

Paired data are ubiquitous inmedical fields. For example, in genomic experiments of which
the purpose is for detecting differentially expressed genes, both cancerous and normal tis-
sues are extracted from each patient. Paired data can eliminate inter-subject variability,
hence hypothesis tests using paired samples are generally more powerful than those using
unpaired samples. To compare gene expression levels between normal and cancer tissues,
a paired test, e.g. paired t-test or Wilcoxon signed-rank test, can be performed.

In practice, it is common that not all subjects are able to provide data for both arms, i.e.
only a portion of the subjects have both normal and tumor tissues, and the rest have either
tumor or normal tissues but not both. The incompleteness in only one arm, say normal
arm, yields ‘partially paired data with incompleteness in normal arm’, and the incomplete-
ness in both arms yields ‘partially paired data with incompleteness in both arms.’ In this
paper, we assume missing completely at random (MCAR).
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Let X, Y denote observations in tumor and normal tissues, respectively. Consider a
data set with n = n1 + n2 + n3 subjects where first n1 subjects provide complete pairs of
tumor and normal tissues, n2 subjects provide only tumor tissues, and n3 subjects provide
only normal tissues. We also assume that n1 and n2 are always larger than 0. Therefore,
if n3 = 0, data is incomplete in normal arm, as shown in Table 1. When n3 > 0, we have
partially paired data with incompleteness in both arms, as shown in Table 2. Assume that
observations of tumor and normal tissues are from populations with means μX and μY ,
respectively. Let δ = μX − μY . For testing if a gene is up-regulated or down-regulated
in tumor samples, we need to test H0 : δ ≤ 0 against Ha : δ > 0 or H0 : δ ≥ 0 against
Ha : δ < 0. We will focus on the former in this paper.

For testing equality of means in partially paired data, traditionally the most widely used
approach is the complete-case analysis, i.e. a paired test using only the paired portion of
datawith the first n1 subjects, referred as ‘naive paired test ’. Thismethod is straightforward
and both parametric and nonparametric paired tests are available in all statistical softwares.
Although ‘naive paired test’ is a legitimate method for testing equality of means for par-
tially paired data (i.e. type-I error is controlled), it may have reduced power as it only uses
the portion of data with complete pairs. Hence, extensive researches have been conducted
targeting using all available data [1–3,5–7,8–19,21,22]. Among them, the combination
tests, based on combining P-values or summary statistics are well studied in literature

Table 1. Partially paired data with
incompleteness in normal arm.

Subject Tumor Normal

1 X1 Y1
2 X2 Y2
3 X3 Y3
...

...
...

n1 Xn1 Yn1
n1 + 1 Xn1+1
n1 + 2 Xn1+2
n1 + 3 Xn1+3
...

...
n1 + n2 Xn1+n2

Table 2. Partially paired data with
incompleteness in both arms.

Subject Tumor Normal

1 X1 Y1
2 X2 Y2
...

...
...

n1 Xn1 Yn1
n1 + 1 Xn1+1
...

...
n1 + n2 Xn1+n2
n1 + n2 + 1 Yn1+1
...

...
n1 + n2 + n3 Yn1+n3
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due to their reasonable type-I error control and good power properties [1–3,6,7,10,16–18].
Recently, a subclass of combination tests based on combining P-values, referred as ‘ P-value
pooling methods’ hereafter in this paper, were proposed by Kuan and Huang [10] for par-
tially paired data with incompleteness in two arms and Qi et al. [16] for partially paired
data with incompleteness in single arm. Compared to other methods, ‘ P-value pooling
methods’ have overwhelming advantages: (1) great flexibilities in terms of choices of tests,
i.e. P-values can come from any parametric or nonparametric tests; (2) great power prop-
erty; (3) simple statistical property under null hypothesis; and (4) ease of computation.
More details will be given later in this paper or can be found in Kuan and Huang [10] and
Qi et al. [16].

Despite many statistical methods exist for testing equality of means for partially paired
data, ‘naive paired tests’ are still routinely used by practitioners these days due to their
simplicity. Therefore, the following questions are intriguing: are ‘naive paired tests’ always
inferior to other tests because they only use portion of data?; if not, which settings allow us
to use ‘naive paired test’ safely without worrying about losing power? In order to address
these questions, we will compare powers by ‘naive paired tests’ and ‘ P-value pooling
methods’, i.e. Kuan and Huang [10] for two-arm missing cases, and Qi et al. [16] for one-
arm missing cases, analytically. We consider settings under normality and with known
variance structure (marginal variances and correlation). When the variance structure is
unknown, the parameters can be substituted with corresponding consistent estimators and
our observations still stand under certain regularity conditions. As paired data with posi-
tive correlations aremuchmore common than those with negative correlations in practice,
we only focus on scenarios with positive correlations in this paper. More comments and
considerations regarding correlation can be found in the last section of this paper.

This paper aims to provide practitioners a general guideline on how to choose between
‘naive paired tests’ and ‘ P-value pooling methods.’ The rest of this paper is organized as
follows. Section 2 presents a brief review of ‘ P-value poolingmethods’ by Qi et al. [16] and
Kuan and Huang [10]. In Section 3, power of ‘ P-value pooling methods’ under normality
is presented. The results are given in Section 4. Section 5 demonstrates how to use the
guidance to choose appropriate methods via some real data examples. Finally, Section 6
gives a summary and discussion.

2. Preliminaries

Consider a partially paired data set with incompleteness in either one arm or both arms,
as shown in Tables 1 and 2. Let (X̄(1), S2X(1)) and (Ȳ(1), S2Y(1)) denote the sample mean and
sample variance based on n1 paired samples for tumor and normal arms, respectively, and
let SX(1),Y(1) be the sample covariance based on the paired samples. Furthermore, let X̄(2)

and S2X(2) be the sample mean and sample variance for the unpaired n2 tumor samples and
Ȳ(2), and S2Y(2) be the sample mean and sample variance for the unpaired n3 normal sam-
ples. We consider testingH0 : δ = μX − μY ≤ 0 againstHa : δ > 0 at significance level α.
Under normality, we aim to compare power of ‘naive paired tests’ with that of ‘ P-value
pooling methods’ (i.e. the method by Qi et al. [16] for one-arm missing and the method
by Kuan and Huang [10] for two-arm missing). In the following, both P-value pooling
methods will be reviewed briefly.
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2.1. P-value poolingmethod for partially paired datawith incompleteness in
single arm byQi et al. [17]

Consider the data structure in Table 1. The gist of P-value pooling method in [16] is as
follows. The paired portion of data (Xi,Yi), i = 1, 2, . . . , n1 are used to construct a paired
test statistic Tp, and the unpaired portion of tumor arm (Xn1+1, . . . ,Xn1+n2) and the nor-
mal arm of paired portion (Y1,Y2, . . . ,Yn1) are used to construct a two-sample test statistic
Tup. Let Pp and Pup be the corresponding P-values . Also, denote Fp and Fup as the null dis-
tributions for Tp and Tup. For testing the hypothesisH0 : δ ≤ 0 vs.Ha : δ > 0, the P-values
Pp = 1 − Fp(Tp) ∼ U(0, 1) and Pup = 1 − Fup(Tup) ∼ U(0, 1) underH0. Hence, the pro-
bit inverse transformations of Pp and Pup, i.e. Zp = �−1(Pp) and Zup = �−1(Pup) follow
N(0, 1). The overall test statistic is defined as:

T1 = λ1Zp + λ2Zup√
λ21 + λ22 + 2λ1λ2η

, (1)

where η = corr(Zp,Zup), andλ1 andλ2 are theweights for the paired test and unpaired test,
respectively. Under null hypothesis H0, T1 ∼ N(0, 1). Note that the dependence between
Tp and Tup, caused by sharing normal arm Y1,Y2, . . . ,Yn1 , results in the dependence
between Zp and Zup which will be captured by η.

The power of combination test will be explored using two weighting schemes: (1)
unweighted; i.e. λ1 = λ2 = 1; (2) weighting by the square root of geometric means of the
sample sizes; i.e. λ1 = √

n1, and λ2 = √
2/(1/n1 + 1/n2). The other weighting schemes

explored by Qi et al. [16] include using inverse of standard errors of mean difference esti-
mators and the square root of the sample sizes (i.e. λ1 = √

2n1, λ2 = √
n1 + n2). It was

discovered that the former could give inflated type I error when sample size is small and
the latter yields similar performance as weighting scheme (2) stated above, hence they will
not be explored further in this paper.

2.2. P-value poolingmethod for partially paired datawith incompleteness in both
arms by Kuan and Huang [11]

Consider the data structure in Table 2. The gist of P-value pooling method by Kuan and
Huang [10] is given in the following. The paired portion of data (Xi,Yi), i = 1, 2, . . . , n1
are used to construct a paired test statistic Tp, and the unpaired portion of tumor arm
(Xn1+1, . . . ,Xn1+n2) and the unpaired portion of normal arm (Yn1+1,Yn1+2, . . . ,Yn1+n3)

are used to construct a two-sample test statisticTup. ObviouslyTp andTup are independent,
so are their P-values Pp and Pup. The combination test statistic defined in [10] is

T2 = λ1Zp + λ2Zup√
λ21 + λ22

∼ N(0, 1) under H0. (2)

Similarly as in 2.1, two weighting schemes (i.e. unweighted and weighting by square root
of geometric means of sample sizes) will be explored in power calculation.
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3. The power

In this section, we compare powers of the ‘P-value pooling tests,’ i.e. themethod byQi et al.
[16] for one-arm missing and the method by Kuan and Huang [10] for two-arm missing,
to that of ‘naive paired tests ’. A right-sided test is considered, that is, H0 : δ ≤ 0, versus
Ha : δ > 0. Assume (X,Y)T follow bivariate normal distributions with mean vector μ =
(μX ,μY)T and known covariance matrix � =

(
σ 2
X ρσXσY

ρσXσY σ 2
Y

)
.

3.1. Power of the ‘naive paired test’

Despite that the incompleteness is in one arm or both arms, the naive paired test only uses
the paired portion of data, i.e. (Xi,Yi) where i = 1, 2, . . . , n1. With known variances, the
paired test statistic is

Tp = X̄(1) − Ȳ(1)√
1
n1 (σ

2
X + σ 2

Y − 2ρσXσY)
∼ N(0, 1) under H0. (3)

The null hypothesis is rejected if Tp > z1−α , thus the power is

Powerp = Pr(Tp > z1−α|δ > 0)

= 1 − �

⎛
⎜⎜⎜⎜⎝z1−α − δ√

σ 2
Y
n1

(ν2 + 1 − 2ρν)

⎞
⎟⎟⎟⎟⎠ ,

where z1−α is the (1 − α) ∗ 100% quantile of standard normal distribution, �(·) is the
cumulative distribution function of standard normal, and ν2 = σ 2

X/σ 2
Y .

3.2. Power of P-value poolingmethodwith incompleteness in single arm

The paired test Tp is the same as (3). Using the unpaired portion of tumor arm
(Xn1+1, . . . ,Xn1+n2) and the normal arm from the paired portion (Y1,Y2, . . . ,Yn1), given
known variances, a two-sample test statistic Tup is defined as

Tup = X̄(2) − Ȳ(1)√
σ 2
Y
n1

(
ν2

γ1
+ 1

) , (4)

where ν2 = σ 2
X/σ 2

Y , γ1 = n2/n1. Tup also follows standard normal distribution under the
null hypothesis. Let Pp and Pup stand for P-values from Tp and Tup, respectively, it is easy
to see that Zp = �−1(Pp) = Tp, Zup = �−1(Pup) = Tup under H0.
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The correlation between Tp and Tup can be easily calculated as

η = corr(Tp,Tup) = 1 − ρν√
ν2 + 1 − 2ρν

√
ν2/γ1 + 1

. (5)

Substituting Tp, Tup and η into (1), we have the combination test statistic T1 for partially
paired data with incompleteness in single arm.

Under null hypothesis, T1 follows standard normal distribution. Hence the power of T1
is

Power1 = Pr(T1 > z1−α|δ > 0)

= Pr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1Tp − λ1δ√
σ 2
Y
n1

(ν2 + 1 − 2ρν)

+ λ2Tup − λ2δ√√√√√σ 2
Y
n1

⎛
⎝ν2

γ1
+1

⎞
⎠

√
λ21 + λ22 + 2λ1λ2η

>

z1−α −

λ1δ√
σ 2
Y
n1

(ν2 + 1 − 2ρν)

+ λ2δ√
σ 2
Y
n1

(
ν2

γ1
+ 1

)
√

λ21 + λ22 + 2λ1λ2η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1 − �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z1−α −

λ1δ√
σ 2
Y
n1

(ν2 + 1 − 2ρν)

+ λ2δ√
σ 2
Y
n1

(
ν2

γ1
+ 1

)
√

λ21 + λ22 + 2λ1λ2η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

To compare powers of P-value pooling method T1 and naive paired test Tp, we define the
efficiency function f1(ρ, ν, γ1) as

f1(ρ, ν, γ1) =

λ1√
(ν2 + 1 − 2ρν)

+ λ2√(
ν2

γ1
+ 1

)
√

λ21 + λ22 + 2λ1λ2η
∗

√
ν2 + 1 − 2ρν. (7)

If f1(ρ, ν, γ1) > 1, then P-value pooling method is more powerful than the naive paired
test. The f1(ρ, ν, γ1) is a complex function of correlation ρ, the variance ratio of tumor arm
to normal arm, i.e. ν2 = σ 2

X/σ 2
Y , and the sample size ratio of unpaired tumor sample size

n2 to paired sample size n1, i.e. γ1 = n2/n1. Our aim is to find out the values of (ρ, ν, γ1)
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satisfying f1(ρ, ν, γ1) > 1. In Section 4, we will present results obtained from numerical
calculations.

3.3. Power of P-value poolingmethodwith incompleteness in both arms

Similarly to one-arm missing cases, the power of combination test defined in (2) for
partially paired data with incompleteness in both arms is

Power2 = Pr(T2 > z1−α|δ > 0)

= 1 − �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z1−α −

λ1δ√
σ 2
Y
n1

(ν2 + 1 − 2ρν)

+ λ2δ√
σ 2
Y
n1

(
ν2

γ1
+ 1

γ1γ2

)
√

λ21 + λ22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

where γ2 = n3/n2, i.e. the ratio of unpaired normal sample size n3 to unpaired tumor sam-
ple size n2, and ν2 and γ1 are the same as defined in 3.2. Define the efficiency function
f2(ρ, ν, γ1, γ2) as

f2(ρ, ν, γ1, γ2) =

λ1√
(ν2 + 1 − 2ρν)

+ λ2√√√√√
⎛
⎝ν2

γ1
+

1
γ1γ2

⎞
⎠

√
λ21 + λ22

∗
√

ν2 + 1 − 2ρν. (9)

The f2(ρ, ν, γ1, γ2) is a function of ρ, ν2, γ1 and γ2.When f2(ρ, ν, γ1, γ2) > 1,P-value pool-
ingmethod ismore powerful than the naive paired test. In Section 4, we will present results
obtained from numerical calculations.

4. Results

In this section, we present the results from extensive numerical studies for comparing pow-
ers between the ‘naive paired tests’ and ‘ P-value pooling tests.’ Note that these studies are
not simulation studies comparing powers among different tests, instead it is an analytical
study investigating how the comparison of powers of these two tests might vary according
to parameters. Most importantly, we aim to point out the finding that the ‘naive paired
tests’ can be more powerful than ‘ P-value pooling tests’ for certain scenarios. In order
to perform a feasible analytical study, data is assumed to follow normal distribution with
known variances.

4.1. With incompleteness in single arm

For partially paired data with incompleteness in single arm, we compare the power of the
P-value pooling test by Qi et al. [16] and that of naive paired test. As stated in Section 2.1,
we consider theP-value pooling test without andwithweights (i.e. square root of geometric
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means of the sample sizes). The sample size ratio γ1 = n2/n1 is ranging from negatively
balanced (1/6, 1/5, 1/4, 1/3, 1/2), balanced (1), to positively balanced (2, 3, 4, 5, 6), and
variance ratio ν2 = σ 2

X/σ 2
Y is set as 1/5, 1/3, 1/2, 1, 2, 3, 5.

To present an user friendly guideline for choosing the most powerful test to use, Table 3
lists the maximum correlation ρ for the unweighted and weighted combination tests to be
more powerful than the naive paired test given γ1 and ν2. These values are the same ones
used to create Figures 1 and 2.

Table 3. With incompleteness in single arm: maximum value of correlation ρ for T1 (unweighted and
weighted) to be more powerful than Tp given γ1 = n2/n1 and ν2 = σ 2

X /σ 2
Y .

γ1

1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6

ν2 Unweighted
1/5 0.000 0.000 0.000 0.035 0.134 0.234 0.286 0.303 0.312 0.317 0.321
1/3 0.000 0.000 0.000 0.067 0.188 0.311 0.375 0.396 0.407 0.414 0.418
1/2 0.000 0.000 0.000 0.108 0.250 0.394 0.468 0.493 0.506 0.514 0.519
1 0.000 0.000 0.045 0.236 0.427 0.618 0.714 0.745 0.761 0.771 0.777
2 0.000 0.000 0.208 0.505 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.000 0.000 0.378 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.000 0.139 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Weighted
1/5 0.005 0.037 0.074 0.118 0.170 0.234 0.274 0.288 0.296 0.300 0.302
1/3 0.056 0.090 0.128 0.176 0.236 0.312 0.358 0.376 0.384 0.390 0.394
1/2 0.126 0.158 0.200 0.250 0.312 0.394 0.448 0.466 0.478 0.484 0.488
1 0.342 0.374 0.414 0.464 0.530 0.618 0.677 0.700 0.710 0.718 0.724
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 1. With incompleteness in single arm:maximum ρ’s for unweighted version of combination test
T1 to be more powerful than the naive paired test Tp, given γ1 and ν2. The dashed lines correspond to
ρ = 0.618 given γ1 = 1, and ν2 = 1.
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Figure 2. With incompleteness in single arm: maximum ρ’s for weighted version of combination test
T1 to be more powerful than the naive paired test Tp, given γ1 and ν2. The dashed lines correspond to
ρ = 0.677 given γ1 = 2, and ν2 = 1. Note that for ν2 = 2, 3, 5, the lines overlap.

Figure 1 presents the maximum correlation ρ (i.e. the maximum correlation for the
unweighted P-value pooling test T1 being more powerful than the naive paired test Tp)
vs. γ1 = n2/n1, given different values of ν2. For example, for homoscedastic and balanced
data, i.e. ν2 = 1 and γ1 = 1, the maximum correlation for the unweighted P-value pooling
testT1 beingmore powerful than the naive paired testTp is 0.618 (as shown by dashed lines
in Figure 1); i.e. the naive paired test is more powerful than the unweighted combination
test when the correlation is greater than 0.62. Overall, there are several interesting obser-
vations in Figure 1. First of all, given ν2 ≤ 1, themaximum correlation increases as γ1 goes
up. For example, given ν2 = 1, the maximum correlation ρ is 0.427 when γ1 = 1/2, and
0.618 when γ1 = 1. In other words, the naive paired test is more powerful than the com-
bination test when ρ > 0.427 given ν2 = 1 and γ1 = 1/2 and so when ρ > 0.618 given
ν2 = 1 and γ1 = 1. Secondly, when γ1 = 1/6, i.e. sample size in paired portion is 6-fold of
that in unpaired portion, themaximum correlation ρ = 0 despite ν2, i.e. in terms of power,
the combination test is always inferior to the naive paired test. Hence it is always safe to
ignore the unpaired portion of tumor arm when its size is less than or equal to one sixth
of that of the paired portion despite the other parameters. Thirdly, given ν2 = 2, 3, 5, the
combination test is always superior to the naive paired test (i.e. maximum ρ = 1) when
sample size is positively balanced.

Figure 2 presents themaximum value of correlation ρ for the weighted combination test
T1 to bemore powerful than the naive paired testTp vs. sample size ratio γ1 = n2/n1, given
variance ratio ν2 = σ 2

X/σ 2
Y . For example, under homoscedasticity, as γ1 = 2, themaximum

correlation for the weighted version of combination test being more powerful than the
naive paired test is 0.677; i.e. the naive paired test is more powerful when ρ > 0.677. From
Figure 2, we observe the following: (1)Given ν2 ≤ 1, themaximumcorrelation increases as
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γ1 goes up; (2) Given ν2 ≥ 2, maximum ρ = 1, i.e. the combination test is always superior
to the naive paired test despite the value of γ1. From Table 3, Figures 1 and 2, we can see
that the weighted combination test is more powerful than the naive paired test for a bigger
range of ρ when γ1 ≤ 1, compared to the unweighted combination test.

In summary, sample size ratio γ1 = n2/n1, variance ratio ν2 = σ 2
X/σ 2

Y and correlation
ρ are the three main factors affecting power and hence our choice of tests.

4.2. With incompleteness in both arms

For partially paired data with incompleteness in both arms, we compare the power of the
P-value pooling test by Kuan and Huang [10] to that of the naive paired test. As stated in
Section 2.2,We consider the P-value pooling test without and with weights (i.e. square root
of geometric means of the sample sizes). The first sample size ratio γ1 = n2/n1 is ranging
from negatively balanced (16 ,

1
5 ,

1
4 ,

1
3 ,

1
2 ), balanced (1), to positively balanced (2, 3, 4, 5, 6);

the second sample size ratio γ2 = n3/n2 is set as 0.5, 1, 2, 4; and variance ratio ν2 = σ 2
X/σ 2

Y
is set as 1

5 ,
1
3 ,

1
2 , 1, 2, 3, 5.

To present an user friendly guideline for choosing the most powerful test to use,
Tables 4–7 list the maximum correlation ρ for the unweighted and weighted combination
tests to be more powerful than the naive paired test given γ1 and ν2, for γ2 = 0.5, 1, 2, 4,
respectively. These values are the same ones used to create Figures 3 and 4.

Figure 3 consists of four subplots which correspond to four settings of γ2. Each panel
presents the maximum values of correlation ρ for unweighted P-value pooling test to be
more powerful than the naive paired test vs. γ1 = n2/n1, given different values of ν2. Gen-
erally speaking, given γ2 and ν2, the maximum correlation which allows the unweighted
combination test being more powerful than the naive paired test increases as γ1 goes
up till γ1 reaches a certain value. However, the relationship between maximum corre-
lation and ν2 is complicated. For example, given γ1 = 1/3 and γ2 = 2, the maximum

Table 4. With incompleteness in both arms (γ2 = n3/n2 = 0.5): maximum value of correlation ρ for
combination test T2 (unweighted and weighted) to be more powerful than the naive paired test given
γ1 = n2/n1 and ν2 = σ 2

X /σ 2
Y .

γ1

1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6

ν2 Unweighted
1/5 0.000 0.000 0.000 0.076 0.498 0.920 1.000 1.000 1.000 1.000 1.000
1/3 0.000 0.000 0.000 0.114 0.462 0.808 0.982 1.000 1.000 1.000 1.000
1/2 0.000 0.000 0.000 0.150 0.454 0.758 0.910 0.960 0.984 1.000 1.000
1 0.000 0.000 0.000 0.228 0.486 0.742 0.871 0.915 0.936 0.949 0.958
2 0.000 0.000 0.090 0.332 0.576 0.818 0.940 0.980 1.000 1.000 1.000
3 0.000 0.000 0.164 0.412 0.660 0.908 1.000 1.000 1.000 1.000 1.000
5 0.000 0.000 0.268 0.536 0.804 1.000 1.000 1.000 1.000 1.000 1.000

Weighted
1/5 0.954 0.957 0.962 0.972 0.988 1.000 1.000 1.000 1.000 1.000 1.000
1/3 0.835 0.838 0.843 0.850 0.864 0.899 0.944 0.974 0.996 1.000 1.000
1/2 0.782 0.784 0.788 0.794 0.806 0.836 0.876 0.903 0.922 0.937 0.949
1 0.762 0.766 0.768 0.774 0.784 0.810 0.843 0.866 0.883 0.895 0.905
2 0.837 0.839 0.842 0.847 0.857 0.882 0.914 0.935 0.950 0.962 0.970
3 0.927 0.929 0.933 0.938 0.948 0.972 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5. With incompleteness in both arms (γ2 = n3/n2 = 1): maximum value of correlation ρ for
combination test T2 (unweighted and weighted) to be more powerful than the naive paired test given
γ1 = n2/n1 and ν2 = σ 2

X /σ 2
Y .

γ1

1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6

ν2 Unweighted
1/5 0.000 0.190 0.420 0.652 0.882 1.000 1.000 1.000 1.000 1.000 1.000
1/3 0.000 0.164 0.362 0.560 0.758 0.957 1.000 1.000 1.000 1.000 1.000
1/2 0.000 0.150 0.332 0.514 0.697 0.879 0.970 1.000 1.000 1.000 1.000
1 0.000 0.143 0.314 0.486 0.657 0.828 0.915 0.943 0.958 0.966 0.972
2 0.000 0.150 0.332 0.514 0.697 0.879 0.970 1.000 1.000 1.000 1.000
3 0.000 0.164 0.362 0.560 0.758 0.957 1.000 1.000 1.000 1.000 1.000
5 0.000 0.190 0.420 0.652 0.882 1.000 1.000 1.000 1.000 1.000 1.000

Weighted
1/5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1/3 0.888 0.892 0.898 0.906 0.922 0.957 1.000 1.000 1.000 1.000 1.000
1/2 0.816 0.820 0.824 0.832 0.846 0.879 0.919 0.943 0.960 0.972 0.980
1 0.768 0.772 0.778 0.784 0.798 0.828 0.866 0.889 0.905 0.916 0.925
2 0.816 0.820 0.824 0.832 0.846 0.879 0.919 0.943 0.960 0.972 0.980
3 0.888 0.892 0.898 0.906 0.922 0.957 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6. With incompleteness in both arms (γ2 = n3/n2 = 2): maximum value of correlation ρ for
combination test T2 (unweighted and weighted) to be more powerful than the naive paired test given
γ1 = n2/n1 and ν2 = σ 2

X /σ 2
Y .

γ1

1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6

ν2 Unweighted
1/5 0.536 0.671 0.804 0.939 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1/3 0.412 0.536 0.660 0.784 0.908 1.000 1.000 1.000 1.000 1.000 1.000
1/2 0.332 0.454 0.576 0.697 0.818 0.940 1.000 1.000 1.000 1.000 1.000
1 0.228 0.356 0.486 0.613 0.742 0.871 0.936 0.958 0.968 0.974 0.978
2 0.150 0.302 0.454 0.605 0.758 0.910 0.984 1.000 1.000 1.000 1.000
3 0.114 0.288 0.462 0.635 0.808 0.982 1.000 1.000 1.000 1.000 1.000
5 0.076 0.287 0.498 0.708 0.920 1.000 1.000 1.000 1.000 1.000 1.000

Weighted
1/5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1/3 0.938 0.942 0.948 0.957 0.972 1.000 1.000 1.000 1.000 1.000 1.000
1/2 0.847 0.851 0.857 0.866 0.882 0.914 0.950 0.970 0.984 0.994 1.000
1 0.774 0.778 0.784 0.794 0.810 0.843 0.883 0.905 0.920 0.930 0.938
2 0.794 0.800 0.806 0.818 0.836 0.876 0.922 0.949 0.966 0.978 0.988
3 0.850 0.856 0.864 0.876 0.899 0.944 0.996 1.000 1.000 1.000 1.000
5 0.972 0.978 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.784, 0.613, 0.708 when ν2 = 1/3, 1, 5, respectively, indicating a non-monotonic
relationship between ρ and ν2. Note that when γ2 = 1, the lines for any given value of
ν2 and its reciprocal (e.g. ν2 = 1

2 and 2) overlap, as shown in Figure 3.
The results for the weighted version of combination test are presented in Figure 4. Com-

paring to Figure 3, it is clear that the weighted combination test is more powerful than the
naive paired test for a bigger range of ρ. In other words, despite γ1, γ2, ν2, the maximum
ρ for the weighted combination test being more powerful than the naive paired test is at
least 0.75.
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Table 7. With incompleteness in both arms (γ2 = n3/n2 = 4): maximum value of correlation ρ for
combination test T2 (unweighted and weighted) to be more powerful than the naive paired test given
γ1 = n2/n1 and ν2 = σ 2

X /σ 2
Y .

γ1

1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6

ν2 Unweighted
1/5 0.824 0.911 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1/3 0.635 0.722 0.808 0.895 0.982 1.000 1.000 1.000 1.000 1.000 1.000
1/2 0.514 0.605 0.697 0.788 0.879 0.970 1.000 1.000 1.000 1.000 1.000
1 0.356 0.464 0.572 0.679 0.786 0.893 0.947 0.964 0.974 0.978 0.982
2 0.242 0.378 0.514 0.652 0.788 0.925 0.992 1.000 1.000 1.000 1.000
3 0.188 0.350 0.510 0.672 0.832 0.994 1.000 1.000 1.000 1.000 1.000
5 0.134 0.334 0.536 0.738 0.939 1.000 1.000 1.000 1.000 1.000 1.000

Weighted
1/5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1/3 0.976 0.980 0.986 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1/2 0.872 0.876 0.883 0.892 0.906 0.937 0.970 0.988 1.000 1.000 1.000
1 0.778 0.784 0.790 0.800 0.818 0.853 0.893 0.914 0.928 0.938 0.945
2 0.778 0.786 0.794 0.806 0.828 0.874 0.924 0.952 0.968 0.982 0.990
3 0.822 0.830 0.839 0.855 0.881 0.935 0.994 1.000 1.000 1.000 1.000
5 0.926 0.935 0.948 0.966 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n3 n2 = 2 n3 n2 = 4

n3 n2 = 0.5 n3 n2 = 1
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Figure 3. With incompleteness in both arms:maximumρ’s for unweighted T2 to bemore powerful than
the naive paired test Tp vs. γ1 given ν2. Each subplot corresponds to a specified value of γ2 = n3/n2.
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n3 n2 = 2 n3 n2 = 4

n3 n2 = 0.5 n3 n2 = 1
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Figure 4. With incompleteness in both arms: maximum ρ’s for weighted T2 to be more power-
ful than the naive paired test Tp vs. γ1 given ν2. Each subplot corresponds to a specified value of
γ2 = n3/n2.

Remark: In Appendix, we consider the asymptotic power of P-value pooling tests under
general settings, i.e. with unknown variances. With incompleteness in one arm, the naive
paired test statistic Tp in (A1) and the two-sample t-test Tup in (A3) lead to the test statistic
T1 in (A5) of which the asymptotic power, i.e APower1 in (A7), converges to Power1 in (6),
under certain regularity conditions. Similar results apply to the scenarios with incom-
pleteness in both arms; i.e. the asymptotic power of T2, i.e. APower2 in (A8), converges to
the Power2 in (8). Additionally, further simulation studies (Tables S1–S4 in ‘Supplemental
material’) under normality with unknown variances and under bivariate logistic distribu-
tion also demonstrate that the presented results here (Table 3 for incompleteness in one
arm and Tables 4–7 for incompleteness in both arms) may be used as crude guidance for
choices of tests when dealing with partially paired data.

5. Real data examples

In this section, we will illustrate how to use Tables 3–7 as guidelines via several real data
examples; i.e. how to decide when to ignore the unpaired portion of data and to perform
the naive paired test without losing power.
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5.1. With incompleteness in single arm

Example 5.1: Among 90 patients in The Cancer Genome Atlas (TCGA) breast cancer
cohort with pathological stage I, 16 of them provided both tumor and normal tissues, and
74 provided only tumor tissues. We are interested in testing whether Gene ABCC1 is up-
regulated, i.e. H0 : δ ≤ 0 against Ha : δ > 0. The sample variances in tumor and normal
tissues are 0.344 and 0.162, and the estimated correlation is ρ = 0.279. Sample size ratio
γ1 = n2/n1 ≈ 5 and variance ratio ν2 = σ 2

X/σ 2
Y ≈ 2. According to Table 3, the maximum

values of ρ for P-value pooling methods to be more powerful than the naive paired test
are 1 for both unweighted and weighted tests. Because the estimated correlation ρ is less
than 1, both the unweighted and weighted P-value pooling methods are more powerful
than the naive paired test. Therefore, P-value pooling tests should be used for testing the
hypothesis.

Example 5.2: To assess the effects of acupuncture for chronic headache [20], 401 patients
were randomly assigned to receive up to 12 acupuncture treatments or to a control inter-
vention offering standard care. The main outcome measures included headache score at
baseline and 12 months. Out of the 401 participants, 205 were assigned to treatment group
and the rest were assigned to control group, and 44 and 56 participants in the treatment
and control groups lost to follow-up at 12 months. We are interested in testing if there is
a significant change in headache score from baseline to 12 month for the treatment group
and control group separately. Fisher’s exact test and logistic regression indicate that the dis-
tribution of missing values is not related to either treatment assignment or the headache
score at baseline. Thus,MCARassumption is not violated for this data set. Figure 5 presents
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Figure 5. Boxplots of headache scores at baseline and 12 months for treatment and control groups for
the acupuncture data [20].
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the boxplots of headache scores at baseline and 12 months for the treatment and control
groups. For the treatment group, the sample size ratio γ1 = 0.27, the estimated ν2 is about
1, and estimated correlation is 0.583. According to Table 3, the maximum correlation for
the combination test to be more powerful than the naive paired test is between 0.045 and
0.236 for unweighted test, and between 0.414 and 0.464 for the weighted test. Hence the
naive paired test is more powerful than both unweighted and weighted P-value pooling
tests. For the control group, the sample size ratio γ1 = 0.40, the estimated ν2 is about 1,
and estimated correlation is 0.811. From Table 3, the maximum correlation for the combi-
nation test to bemore powerful than the naive paired test is between 0.236 and 0.427 for the
unweighted test and between 0.464 and 0.530 for the weighted test. Hence the naive paired
test is also more powerful than both unweighted and weighted P-value pooling tests.

5.2. With incompleteness in both arms

Example 5.3: To investigate whether the mean Karnofsky score, a patient’s functional
status measurement, is the same on patients’ last two days of life [7], observations of 60
patients were selected to compare the mean difference. Among them, 9 patients provided
full data on both days, 28 were scored only on the second to the last day, and 23 were scored
only on the last day. The estimated ν2 is about 1, the estimated correlation from the paired
samples is 0.614, and sample size ratios γ1 ≈ 3, γ2 ≈ 1. From Table 5, the maximum value
of ρ for the combination test to be more powerful than the naive paired test is 0.943 for
unweighted test and 0.889 for the weighted test, respectively. Therefore, both unweighted
and weighted P-value pooling tests are more powerful than the naive paired test for this
data set.

Example 5.4: To understand the role of the earliest recognizable stages of breast neoplasia
in the development of breast cancer, RNAseq libraries were sequenced from formalin-fixed
paraffin-embedded tissue of early neoplasia samples and matched normal breast and car-
cinoma samples from 25 patients [4]. The gene expression levels were compared between
normal vs. early neoplasia, normal vs. cancer, and early neoplasia vs. cancer samples. We
are interested in testing up-regulation of gene PIK3IP2 between normal and cancer sam-
ples. There are 11 patients with complete paired normal and cancer samples, 3 patients with
only cancer samples, and 11 with only normal samples. The correlation estimated from the
paired samples is 0.833, and sample size ratios γ1 ≈ 1/4, γ2 ≈ 4, estimated sample variance
ratio is about ν2 = 0.426. From Table 7, the maximum value of correlation ρ for the com-
bination test to be more powerful is between 0.697 and 0.808 for the unweighted test, and
between 0.883 and 0.986 for the weighted test. Hence, between unweighted P-value pool-
ing test and the naive paired test, the latter is a better choice; between weighted P-value
pooling test and the naive paired test, the former is a better choice.

Remark: Note that these examples are presented for illustrative purposes and the vari-
ances in these examples are estimated but assumed to be known.

6. Summary and discussion

Partially paired data is very common in practice. For testing equality of means, practi-
tioners often ignore the unpaired portion(s) and perform ‘naive paired tests ’. While it is
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a common belief that such doing will yield reduced power, a detailed investigation about
power comparison has never been done. In this paper, we compare powers of the ‘ P-value
pooling tests’ and the ‘naive paired test’ analytically under normality. Our findings are
quite counterintuitive, i.e. the ‘naive paired test’ does not suffer from power loss under
quite some settings for which the unpaired portion can be safely ignored. Practical guide-
lines for practitioners are given in Figures 1–4 and Tables 3–7. Furthermore, for data with
incompleteness in either single arm or both arms, we observe that the weighted combina-
tion test is generally more powerful than the unweighted version. The observation is more
obvious when missing data occurs in both arms.

This paper aims to present a counterintuitive point that tests which use all available
data do not always outperform the naive paired tests which use only the paired portion of
data; i.e. sometimes ‘less is more ’. Simulation study is not an efficient way to justify this
point as any simulation studies only can cover limited number of scenarios. Therefore, this
paper investigates this point analytically in order tomake it loud and clear. The power com-
parison in the paper were performed analytically under normal distribution with known
variances. Only with these assumptions, we are able to find the true power under differ-
ent parameter settings analytically, and are capable of providing simple guidelines such as
Tables 3–7.

Although these guidelines are developed under strict assumptions, based on the asymp-
totic powers and additional simulation studies presented in ‘Supplemental material’, they
may serve as crude guidelines in more general cases, i.e. with unknown variances and/or
without normality.

This paper only presents settings with positive correlation due to two reasons: (1) posi-
tive correlations aremuchmore common for repeated data in practice; (2)when correlation
is negative, combination tests are superior to naive paired tests in general in terms of power.
This observation agrees with the ‘common sense’, i.e. ‘more data yields higher power ’.
Therefore, to focus on the aim of this paper, i.e. to present a counterintuitive point that
tests using more data does not necessarily yield higher power, analytical results for only
positive correlation are presented in the paper.

Out ofmany existingmethods for testing equality ofmeans for partially paired data, this
paper focuses on ‘ P-value poolingmethods’ by Kuan andHuang [10] for two-armmissing
cases, andQi et al. [16] for one-armmissing cases, for power comparisonwith ‘naive paired
tests.’ Besides appealing properties such as good type-I error control and power, the ‘ P-
value pooling methods’ also come with great flexibility as the ‘ P-values ’ can come from
any parametric or nonparametric tests.

Lin and Stivers [11] proposedmodifiedMLE test and several other tests based on simple
mean difference estimator for partially paired data with incompleteness in both arms. Via
simulation, they touched on the power comparison of their modified MLE test vs. naive
paired test. This paper differs from [11] fundamentally: (1) scenarios with incompleteness
in one-arm and two-arm are considered; (2) the naive paired test is compared to the ‘ P-
value pooling method’ via analytical investigation; (3) the sample size ratio is taken into
account in addition to correlation and variance ratio.

Regarding the missing mechanisms, the focus of this paper is MCAR. Our future work
will investigate similar problems under MAR (missing at random).

This paper ismainlymeant to serve as a reminder to the practitioners and/or researchers
that sometimes ‘less is more’ in data analysis.
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Appendix. Asymptotic power under normality with unknown variances

Under normality, when variances are unknown, the naive paired t-test statistic is

Tp = X̄(1) − Ȳ(1)√
1
n1 (S

2
X(1) + S2Y(1) − 2SX(1)Y(1) )

∼ tn1−1 under H0. (A1)

The power is

Powerp = Pr(Tp > tn1−1;1−α|δ > 0)

= 1 − FT

⎛
⎜⎜⎜⎜⎝tn1−1;1−α − δ√

S2Y(1)

n1
(ν̂2 + 1 − 2ρ̂ν̂)

⎞
⎟⎟⎟⎟⎠ ,

where ν̂2 is the estimated variance ratio S2X(1) /S2Y(1) , ρ̂ is the estimated correlation SX(1)Y(1) /SX(1)SY(1) ,
and FT is the cumulative distribution function of t-distribution.

As the number of degrees of freedom grows, t-distribution approaches to standard normal dis-
tribution, and since ν̂, ρ̂ converges in probability to ν and ρ, respectively, the asymptotic power can
be written as

APowerp = 1 − �

⎛
⎜⎜⎜⎜⎝z1−α − δ√

σ 2
Y
n1

(ν2 + 1 − 2ρν)

⎞
⎟⎟⎟⎟⎠ , (A2)

where �(·) is the cumulative distribution function of standard normal.
For unpaired data (X(2),Y(1)), assuming unequal variances, the two-sample t-test statistic Tup is

defined as

Tup = X̄(2) − Ȳ(1)√
S2Y(1)

n1
+ S2X(2)

n2

. (A3)

Similarly to Tp, since Tup
d−→ N(0, 1), and S2Y(1) /S2X(2) converges in probability to ν2, n2/n1 converges

to γ1, the asymptotic power function of Tup is

APowerup = 1 − �

⎛
⎜⎜⎜⎜⎝z1−α − δ√

σ 2
Y
n1

(
ν2

γ1
+ 1

)
⎞
⎟⎟⎟⎟⎠ . (A4)

Let Pp and Pup stand for P-values fromTp andTup respectively, it is easy to see thatZp = �−1(Pp) →
Tp, Zup = �−1(Pup) → Tup under H0. The test statistic for P-value pooling method in data with
incompleteness in single arm is then

T1 = λ1Zp + λ2Zup√
λ21 + λ22 + 2λ1λ2η̂

, (A5)

where λ1 and λ2 are the weights for the paired test and unpaired test, respectively, and η̂ is the
asymptotic correlation between Tp and Tup:

η̂ = (S2Y(1) − SX(1) ,Y(1) )/n1√
(S2X(1) + S2Y(1) − 2SX(1) ,Y(1) )/n1

√
S2X(2) /n2 + S2Y(1) /n1

. (A6)
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By large sample theory, η̂ converges in probability to η = 1−ρν√
ν2+1−2ρν

√
ν2/γ1+1

. Hence the asymp-

totic power of T1 is

APower1 = 1 − �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z1−α −

λ1δ√
σ 2
Y
n1

(ν2 + 1 − 2ρν)

+ λ2δ√
σ 2
Y
n1

(
ν2

γ1
+ 1

)
√

λ21 + λ22 + 2λ1λ2η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A7)

Thus, the power comparison between P-value pooling method T1 and naive paired test Tp is
asymptotically equivalent to f1(ρ, ν, γ1) in manuscript.

For partially paired data with incompleteness in both arms, the two-sample t-test uses unpaired
portion of data X(2) and Y(2), resulting in independent Tp and Tup. The asymptotic power of T2 can
be written as

APower2 = 1 − �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z1−α −

λ1δ√
σ 2
Y
n1

(ν2 + 1 − 2ρν)

+ λ2δ√
σ 2
Y
n1

(
ν2

γ1
+ 1

γ1γ2

)
√

λ21 + λ22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A8)

where γ2 = n3/n2, ν2 and γ1 are the same as defined in APower1. Hence the power comparison
between P-value pooling method T2 and naive paired test Tp for data with incompleteness in both
arms is asymptotically equivalent to f2(ρ, ν, γ1, γ2) in manuscript.
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